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Abstract. Powder samples of thiol-capped gold nanoparticles in the size range of 2–4 nm were quantita-
tively characterized by means of synchrotron X-ray diffraction data, with respect to their structure, size
and strain distributions. A novel Rietveld-like approach was applied, refining domain size distribution,
strain-size dependence and structure type concentrations. Three structure types (cuboctahedron, icosahe-
dron, decahedron) were considered in this analysis and a detail study of the strain content was performed
by comparing different models. The results showed a strong influence of the strain model and a careful
analysis is presented. Final domain size and strain distributions agree well with the existence of both
single-domain and imperfectly formed or multi-domain nanoparticles, but the final strain profiles seem to
be mostly related to the different degree of structural perfection at different sizes as a result of the synthesis
process. The present work represents an important step towards the development of robust methods to
determine strain profiles in nanosystems, aiming to fulfill the description of these important but complex
systems.

PACS. 81.07.-b Nanoscale materials and structures: fabrication and characterization – 61.10.Nz X-ray
diffraction – 61.72.Dd Experimental determination of defects by diffraction and scattering

1 Introduction

The interest in nanomaterials research has been increas-
ing in the last decades due to their potential exploita-
tion in new revolutionary technologies. In particular,
size-related effects have been explored to tune materials
properties and to produce unique systems. It has been
a key point to understand the size reduction effects and
for that, new methodologies have to be continuously im-
proved. In particular, the control of basic features of syn-
thesized nanoparticles (NPs), such as well characterized
crystalline domains, narrow size and shape distributions,
are fundamental for any efficient application.

From the structural point of view, important discov-
eries have taken place. One may recall the milestone
works from Ino [1–4] about the occurrence of non-crys-
tallographic structure types in Au nanoparticles, besides
the typical face-centered cubic (fcc) bulk. Further works
have confirmed that deep structural modifications may
occur in nanoparticles and a good review of pre-1994
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work can be found in [5]. We cite here only few ex-
amples especially regarding metal nanoclusters, such as
gold [6–9], silver [10, 11] or cobalt [12–15]. Gold nanopar-
ticles received special attention; major interest topics
include: non-crystallographic structure types [5, 16–19];
size-dependent strain effects [16, 20, 21]; importance of
defects [5, 17], and cluster amorphization [22].

Due to the complexity and newness of nanomateri-
als, combinations of different techniques are usually re-
quired, such as X-ray Diffraction (XRD), Small Angle X-
ray Scattering (SAXS), Extended X-ray Absorption Fine
Structure (EXAFS) and High Resolution Transmission
Electron Microscopy (HRTEM). Equally important is the
association with continuously improved methodology for
data analysis. In particular, due to the major importance
of surface energy at small sizes (see [3–5, 23] and ref-
erences therein), large strain effects are usually present
and affect XRD signal1. The conventional XRD analysis
does not work well for nanoparticles due to the intrinsic
peak broadening and other size reduction effects. In fact,

1 Among the mentioned experimental techniques, XRD and
EXAFS are both very sensitive to strain in nanosystems, while
SAXS and HRTEM are not.
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a suitable representation of the strain contained in NPs
or its dependence with particle size is still a challenge for
most analytical tools.

To address this aspect, an original quantitative method
based on a Rietveld-like approach was previously de-
scribed in [19], dealing with monoatomic fcc-derived
metallic NPs. The effectiveness of the method to accu-
rately estimate structure and size/strain distributions was
tested mainly on simulated patterns of gold nanoparticles.
The present report contains the application of the method
to synchrotron data (see Sect. 2) of three specimens of
thiol-capped gold crystals in the size range of 2–4 nm [17].
The main features of the data analysis method, together
with the last model and algorithm evolutions, are summa-
rized in Section 3. Our gold thiol-capped samples had been
analyzed in a previous work [17] by XRD and HRTEM
techniques, with respect to their size and structure popu-
lation but without a detailed strain content investigation.
EXAFS results [24] on the same samples highlighted a
very small reduction of the nearest-neighbour distance as
a function of particle diameter; this was assigned to the
presence of thiol molecules on particles’ surface.

Despite some efforts, a lack of a detail quantitative
strain analysis in nanoparticles still exists in the litera-
ture. In the present paper, an extensive strain analysis
was performed within the approximation of the strain
model included in the method. During the strain anal-
ysis, as described in Section 4, the results pointed out
the need of a better background description and an amor-
phous metal scattering contribution was included. This
has been shown essential to obtain high-quality fits and
reliable parameter estimates. The final refinement results
are presented and discussed in Section 5, followed by con-
clusions in Section 6. For an extensive description of the
model see [19] and references therein.

2 Experimental

Three samples of thiol-passivated gold nanoparticles were
synthesized as described in [17] and the size distributions
were characterized by HRTEM. The mean diameters were
2.0, 3.2 and 4.1 nm, respectively with FWHM of about
1 nm for all cases. In this work, we refer to the samples
by their HRTEM mean diameters. Powder XRD patterns
were collected at the Brazilian Synchrotron Light Lab-
oratory (LNLS-Campinas, Brazil) using a Si(111) dou-
ble crystal to monochromatize the incident X-ray beam
(8.040 KeV), at room temperature and with a wide detec-
tion slit (2 mm) in front of the scintillation detector. The
sample was measured in a flat-plate configuration with the
oily powder spread onto a glass substrate. The experimen-
tal resolution was about 0.13o, which is much smaller than
particle-size broadening in this size range. In fact, 4.1 nm
spherical fcc-Au nanoparticles are expected to show a 2.5o

FWHM at the (111) peak. The 2θ angular range from 20o

up to ≈150o was measured with a 2θ step ≈0.2o. The
wavelength corresponds to λ = 0.1542 nm with an es-
timated error of ±0.5%, allowing for 40 eV uncertainty
in beam energy. The wavelength error was taken into ac-
count when calculating standard deviations on strain pa-

rameters. The beam energy was chosen so as to maximize
the X-ray flux while keeping a good discrimination be-
tween the diffraction patterns of different NPs (see [19],
Fig. 4). The 2θ-zero error is estimated at 0.01o, yielding
a negligible maximum error of 0.05% on the transferred
momentum q = 2 sin(θ)/λ.

3 The method

3.1 General features

In the traditional Rietveld method, the powder diffraction
pattern of polycrystalline samples is composed of sharp
Bragg peaks on a smooth background. It requires suitable
models of: (i) crystal structure of all present phases; (ii) all
sample-related effects (size, strain, disorder, preferred ori-
entations, et cetera); (iii) instrumental contribution. For
fcc-derived NPs, meaningful differences related to size re-
duction effects have to be considered.

Firstly, instrumental contributions are negligible due
to the small NP size. Secondly, fcc-derived NPs often be-
long to non-periodic structure types2. Thirdly, the “lat-
tice” parameters are size-dependent.

A novel approach [19] based on a Rietveld-like method
implements these features. It takes into account three
main structure types (cuboctahedron (C), icosahedron (I)
and decahedron (D)), which are made dimensionless
(thereby independent of the specific material) by setting
the nearest-neighbour distance (NND hereafter) equal to
1/(2

1
2 ). The Debye function (which does not require pe-

riodicity) is used to compute the diffracted intensity3.
Additional features include a log-normal size distribu-
tion, as it is very commonly found in NPs [25], and an
arctangent-like size-strain4 dependence for each structure
type (see [19] and supplementary material). The latter was
chosen for its flexibility in representing a large variety of
strain dependences, as shown in the following.

A new item here included (cf. Sect. 5) is an amorphous
metal scattering contribution, based on a simplified model,
for the background. This has been revealed a critical im-
provement as we found that an amorphous scattering is
not well reproduced by low-order generic background-fit-
ting functions (as Young’s polynomials [26] used in the
original work).

3.2 Disorder and strain in a nanoparticle

We have chosen to describe disorder and strain in NP [19]
without considering the effect of ‘classical’ defects (e.g.
vacancies, stacking faults, . . . ) and in particular the re-
lated Warren-Averbach (WA hereafter) effect (diffraction
order-dependent Bragg peak broadening [27–29]). There

2 These may also be referred to as multi-twinned particles or
MTPs [1–4].

3 We used a computationally feasible variant. In fact, the
number of interatomic distances is ∝ D6 (D is the NP diame-
ter). However, as we discussed in [19], all the information may
be encoded in a number of sampled distances which is ∝ D.

4 Strain is approximated as uniform and isotropic inside each
single NP.
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are several reasons for that. Firstly, in this paper we deal
with NPs of 4 to 36 nm3 and it becomes unlikely to find
more than a few defect (if any) in such small volumes. In
particular, higher-energy defects (e.g. vacancies) may be
disregarded, as the configurational entropy stabilization
effect is negligible due to the small number of possible de-
fect sites in one NP. Lower-energy defects (e.g. stacking
faults) might instead be present and are sometimes ob-
served [5]. We intend to introduce in a near future stack-
ing faults contributions as in [29–31]. However, the sam-
ples here examined (see [17]) apparently do not contain a
large occurrence of this kind of defects. Note that if dis-
locations are not likely present it is unnecessary to think
about a dislocation-related WA effect.

Secondly, let’s consider the effect of the surface. This
is the most important source of disorder in small NPs. For
NPs of 2 to 4 nm in diameter, 25% to 50% of the atoms
are on the NPs’ surface. Thiol-capped NPs are produced
in solution, in the presence of thiol (ligand) molecules,
which control particles’ growth. In some cases, the surface
layer may not be completely formed and may be very dis-
ordered or even amorphous, as it has been shown in simu-
lations [22,32,33]. This is an important effect that had to
be taken into account in our method, as described in the
following sections. Furthermore, a tensile or compressive
deformation of the underlying ordered core has to be con-
sidered. Similar mechanisms can be envisioned when two
or more NPs randomly coalesce during the growth. Even
when a perfectly structured NP is formed, interactions
of surface atoms with the substrate/ligand likely produce
a surface layer deformation (a radial compression or ex-
pansion), which propagates – more or less attenuated –
to the NP core. Several reports have confirmed that (see
Sect. 4.1). In short, we may assume that the ‘lattice pa-
rameter’ (more precisely, the bond length(s)) varies con-
tinuously from the center to the surface of the NP.

Our simple choice [19] was to describe the effect of
this surface-led deformation as an average uniform and
isotropic linear dilatation (compression or expansion, de-
pending on sign) plus the static random disorder (incor-
porated in the Debye-Waller factor). Highly disordered
surface layers are treated as amorphous and suitably ac-
counted for. Again, we do not need to consider WA-
like disorder-induced broadening because this is not jus-
tified for surface-led radial deformations described before.
To understand this point, we have to recall some de-
tails. All information about the spherically averaged (pow-
der) diffractivity of a cluster is encoded [19, 34] into its
set {d; µ} of interatomic distances d and relevant multi-
plicities µ. Considering an ordered cluster with a given
structure, the interatomic distance d corresponds to µ
atom pairs at positions (r1, r2), (r3, r4), . . . (for conve-
nience all atomic position vectors are referred to the clus-
ter’s center of mass). If the cluster is slightly deformed, all
position vectors r1, r2, r3, . . . will change; for a radial de-
formation only their lengths will change. The atom pairs
formerly related by d will now give a set of slightly differ-
ent distances {d′}. We shall consider the average ad = 〈d′〉
and variance σ2

d = 〈d′2〉 − 〈d′〉2 of this set as a function

of the unperturbed common distance d. ad is commonly
assumed to be ∝ d, preserving periodicity even if with
slightly different lattice parameters. Crist and Cohen [35]
have shown that WA broadening is directly related to σ2

d
being proportional to d. This linear dependence causes
order-dependent Bragg peak broadening, while a constant
variance σ2

d would be seen as an increased Debye-Waller
factor, reducing peak height without affecting the shape.

In the special case we are interested in this assump-
tion fails. If we deform the cluster radially, with maximal
deformation at the surface (as described above), it is pos-
sible to show – as we shall in a separate paper – that a)
the average 〈d〉 is approximately proportional to d and,
b) that the variance σ2

d has a complex dependence on d
(increasing with d2 at small d, smooth in the intermediate
range and decreasing quadratically at high d). The latter
behaviour is better described by a constant than a linear
dependence. This justifies our approach.

3.3 Strain dependence on nanoparticle size

We refer to ‘strain’ as an uniform and isotropic dilata-
tion of a NP5 and originated in its surface deformation.
Due to the strong size dependence of the surface effects,
we expect a dependence of the strain profile on NP size.
However, a full description of how it varies as a function
of particle size is still unknown. To tackle this issue, we
have tried different models of strain-size functional depen-
dence, starting from constant to a doubly-curved function
(arctangent). Section 4 presents a thorough study of such
dependence based on our datasets.

3.4 Data analysis

Least-squares techniques were used to fit the experimen-
tal data. Model parameters are mass fractions, size and
strain distribution together with background coefficients
and an isotropic thermal factor. In our first formulation,
a Gauss-Newton algorithm with quadratic line-search was
used to minimize the residual norm. In order to better
deal with the strong nonlinearity of the problem, this
minimization algorithm has been now updated to a full-
Newton method with analytical Hessian and saddle-point
eliminations with a suitable recursive higher-order line
search (see e.g. [36] and [37]) and an optional preliminary
simplex stage [38].

4 Possible models of strain dependence
on size

4.1 Former reports

Theoretical Density Functional Theory calculations [20]
as well as Molecular Dynamics calculations [21, 39]
on surfactant-free Au NPs indicate a contraction of
the Au-Au NND (with respect to the bulk-Au value
d0
Au = 0.2884 nm [40]) when decreasing the particle size

5 Many authors prefer to speak of ‘lattice parameter’ in this
case, but a lattice parameter is ill-defined for non-periodic
structures.
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(about 4% at 1 nm diameter). Cleveland et al. also investi-
gated thiol-capped Au NP samples by means of a limited
comparison with experimental XRD patterns, highlight-
ing a net expansion (1–2%) at 1–2 nm diameter [21] and
a small contraction (half the predicted value) at 2–3 nm
diameter [39]. This suggests caution in comparing theo-
retical and experimental data, especially because of the
unpredictable influence of surface and interface interac-
tions on energetically competitive structures. A recent
work [41] clarified the role of the thiol molecules in re-
laxing the Au-Au distance. Vogel et al. [16] analysed Au
NPs of about 1 nm embedded in an organosilicon polymer
matrix, by XRD and EXAFS. A series of annealed sam-
ples, showing increased NP size, has also been studied. In
their work, the NND was refined by least-square minimiza-
tion of the XRD patterns, including a step-like strain size
dependence, common to all samples (the step is arbitrary
set to 575 atoms). The XRD analysis showed an average
contraction of the Au-Au distance of about 3% with re-
spect to the bulk value. EXAFS confirmed these results
but indicating a stronger contraction of about 4–6%.

4.2 Modelling strain-size dependence

As mentioned, some attention has been devoted to inves-
tigate strain-size relationships but a robust methodology
to extract strain information from XRD patterns is still
needed. Here, we try to move forward in this direction
by carrying out a detailed supplementary work to assess
different models of strain-size dependence (shortly, ‘strain
models’) with increasing complexity.

Cluster ‘size’ is represented (according to the shell-by-
shell construction of [19]) by the number of shells n, pro-
portional to the NP diameter D. To describe how strain
depends on n, a flexible variably-smoothed arctangent-
like function was used, considering four free parameters
(Ω, Ξ, n0, w) for each of the three structure types (see [19],
Eqs. (9, 10)). Ω is the strain value at infinite size, Ξ is the
strain value at the smallest possible size, n0 is the size
where the arctangent has its inflexion point, w is the arct-
angent rise width. Note that, for type C, it is an immediate
choice to set strain to 1 when the NND is equal to its value
in bulk Au (d0

Au). I and D have no “bulk” equivalent and
are non-periodic. Furthermore, the NND in both types is
very close to the bulk value (+6% in I, +1% in D). Our
reference setting (strain = 1) is such that the NND of
every structure type is equal to d0

Au.
By using different combinations of the parameters to

be refined, the arctangent can mimic simpler functions.
For instance, fixing Ξ = Ω we obtain a constant, while
setting w to a very high value and n0, fixed, close to
the mode of mass distribution we obtain a linear depen-
dence. Accordingly, for each one of the three samples we
performed repeated refinements with four strain-size com-
plexity stages, as below:

1. CFS (Constant Fixed Strain): strain independent from
size, with a fixed value for every structure type, scan-
ning several possible combinations of values;

2. CVS (Constant Variable Strain): strain independent
from size, with a variable (refined) value for each struc-
ture type;

3. LVS (Linear Variable Strain): linearly size-dependent
strain with two refined parameters for each structure
type;

4. FVS (Fully Variable Strain): full arctangent-like
size-strain dependence with all four refined parameters
for each structure type.

In the CFS stage the careful exploration of phase space
is meant to provide a validation of refinement results in the
absence of independent measurements, as it is advisable
when a method and a model are tested for the first time.
The strain factor (for each structure type) in this case is
identified by the Ω parameter (with Ξ = Ω and n0, w
irrelevant). We selected 80 trial combinations of Ω values
spanning6 Ω = 0.99(0.01)1.03 for C structure type and to
Ω = 0.98(0.01)1.01 for I, D types. The “unstrained” case
corresponds to set Ω = 1 for all structure types. For each
combination the starting set of parameters was completed
by a trial assignment of the initial size distributions. Back-
ground was represented by Young polynomials with four
coefficients for the 2.0 and 3.2 nm samples, and six for
the 4.1 nm sample (a rather flat and featureless blank had
been experimentally observed). Thereafter, for each com-
bination least-squares minimization runs were performed
to define the best values for all parameters (including
Debye-Waller factors). The corresponding final goodness-
of-fit (GoF) were computed and plotted in Figure 1 vs.
the mass fractions of the three structure types. Note the
broad variability in the final GoF range (showing the sen-
sitivity of XRD data to strain) and the large variability
of the refined mass fractions (showing the difficulty in ob-
taining a correct estimate of the latter when the strain is
not known). For all samples, few results corresponding to
the lowest GoF values can be distinguished from the oth-
ers (see lower half of Fig. 1, together with the relevant Ω
combinations). We can observe that the lowest GoF val-
ues increase with the sample cluster size, which indicates a
greater inadequacy of the constant strain model for larger
nanoparticles. The best-GoF Ω combinations found in the
CFS stage and the remaining parameters were taken as
the starting set for the CVS stage. For the more com-
plex LVS stage, the starting point was chosen as the final
point of CVS. In the FVS case, the starting point was
obtained by a preliminary stage of simplex-method mini-
mization [36, 38].

4.3 Comparison of results with different strain models

In Table 1 we present the refined values of the mass frac-
tions of each structure type obtained by CVS, LVS and
FVS, respectively, and the final GoF value of each run.
We can observe:

1) GoF values always decrease from CVS → LVS → FVS
for each sample, reaching good values for 2.0 nm
(GoF =1.045) and 3.2 nm samples (GoF =1.112),

6 Notation: lower bound(step)upper bound.
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Fig. 1. The GoF values vs. the % mass fraction obtained
from least-squares refinement for different combinations of
fixed Ω ≡ Ξ strain parameters (CFS, cf. Sect. 4.2) for C (◦),
I (�) and D (•) structure types in 2.0 nm (a), 3.2 nm (b)
and 4.1 nm (c) samples. Ω triples corresponding to the best
solutions are given.

Table 1. The mass fractions (%) of each structure type ob-
tained by the strain models CVS, LVS, FVS (see Sect. 4.2)
are reported for the three investigated samples. The final GoF
value of each run is also presented. Standard deviations are
reported below each value.

2.0 nm 3.2 nm 4.1 nm

CVS LVS FVS CVS LVS FVS CVS LVS FVS

C 6.8 11.8 18.1 38.5 38.9 29.9 24.4 29.0 26.9

± 0.2 0.2 1.1 1.1 1.3 0.7 1.3 1.5 1.4

I 64.5 58.4 48.1 43.9 36.9 18.7 35.8 33.2 26.4

± 1.1 0.9 1.6 1.7 1.4 1.2 2.3 4.5 1.4

D 28.7 29.8 33.8 17.6 24.2 51.4 39.8 37.8 46.7

± 1.2 0.9 1.5 1.7 1.9 1.5 2.6 2.1 1.9

GoF 1.14 1.05 1.05 1.59 1.51 1.12 2.06 1.90 1.82
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Fig. 2. Numerical fractions % of C structure as obtained for
the three variable strain models (CVS, LVS, FVS, cf. Sect. 4.2)
vs. the mean domain diameter 〈D〉, for the three investigated
samples.

while still remaining unsatisfactory for the 4.1 nm
sample (GoF =1.820). Although similarities are found
among the CVS/LVS/FVS results, FVS emerges as
the most suitable when the size distribution is broad
enough to justify it. In fact, as GoF values show, LVS
and FVS are equivalent for the 2.0 nm sample, at least
for C and I, which have a very narrow size distribution.

2) Structure populations show broad variations within a
single sample depending on the applied strain model.

3) Unrelated to the strain model and to the sample, C al-
ways shows a very high and unreasonable tensile state
(from +30% to +5%) for the smallest clusters (≤1 nm).
I always has strain <1, as expected.

The previous analysis gives some convincing results, but
some doubtful aspects still remain. In particular, the high
dilatation in the smallest C clusters of all samples seems
unreasonable. Indeed this behaviour is also coupled with
a given trend of the C size distributions with respect to
the GoF values, as shown in Figure 2, where the numerical
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Fig. 3. Final size and strain distributions of C, I and D structures in the 2.0, 3.2 and 4.1 nm samples, respectively. % mass
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fraction % of C corresponding to CVS, LVS and FVS in the
three samples is plotted vs. the mean sample domain size.
This figure clearly indicates the increasing abundance of
very small “C-like” domains with high deformation when
passing from CVS → LVS → FVS strain models (i.e.
with decreasing GoF). This trend has been interpreted as
the effect of an amorphous fraction in the samples whose
diffraction is not well modeled. The next section addresses
how we tackled this problem.

5 Final results and discussion

According to the previous analysis, a simple amorphous
metal-like background contribution was introduced. The
HRTEM analysis in [17] gave evidence of disordered and
partly ordered clusters in these samples, with possible
imperfect surfaces. For noble metal (Au, Pd) NPs this
is a known possibility. A pioneering work by [42] indi-
cates the possible existence of a “liquid” surface layer
on 20–50 nm diameter Au NPs. Experimental and the-
oretical studies (see DFT calculations in [22] and experi-
mental studies cited therein) pointed out the stability of
very small (≈55 atoms) amorphous Au or Pd NPs in
vacuo. Note that 55 atoms correspond to C- or I-NPs
with two shells. More interestingly, Molecular Dynamics
calculations by [32] (see also [43]) on larger Pd clusters
(>900 atoms, a 6-shell C-NP of 3.2 nm diameter) show
that the surface layer (one or two shells) of a perfectly
ordered NP may tend to be amorphous. Figure 6 of [32]
shows the contribution of such layer to the diffraction pat-
tern. For the purpose of the present work, similar MD cal-
culations are too heavy from the computational point of
view. Therefore, we adopted a simpler approach to keep

the perfect model structures but taking into account the
diffractivity of amorphous surface layers.

Amorphous metals typically show the same local or-
der as in bulk crystals but within a short range (below
≈1 nm). Therefore, to simulate the main features of an
amorphous contribution, we took a linear combination of
diffraction patterns from C clusters of one- and two-shell
(with diameters of about 0.6 nm and 1.2 nm, respectively),
each with an independently refined strain parameter and
thermal factor. We stress that the aim of this operation
was neither to provide a structural analysis of a possi-
ble amorphous phase nor its quantification, but only to
add a suitable component to the background to minimize
the error in the analysis by considering only ordered nan-
odomains. With the same purpose, the number of Young’s
polynomial coefficients for the remaining background in-
tensity was increased to eight.

Another slight improvement in this model was the in-
troduction of separate isotropic thermal parameters for
each structure type. The total number of parameters
were 24 for the NP spectrum plus 14 for background and
amorphous scattering.

To test the influence of these corrections, following the
indications given in Section 4.3, a new FVS least-squares
refinement was carried out for all samples. Results show
a consistent improvement, justifying the increased model
complexity.

The final structure, size and strain distributions are
presented in Figure 3 for all samples. In Table 2 the mass
fractions (W ), the mean diameter (〈D〉) and the isotropic
thermal factor (B) of each structure type, as well as the
final GoF values are reported. Figure 4 shows the final
best-fit for each sample together with the profile of the to-
tal background. The cumulative domain size distribution
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Table 2. The mass fractions (W ), the mean diameter (〈D〉) of
domains and the isotropic thermal factors B of each structure
type corresponding to the final results are reported for the
three investigated samples, together with the final GoF. W is
expressed in % and 〈D〉 in nm.

2.0 nm 3.2 nm 4.1 nm

W 〈D〉 B W 〈D〉 B W 〈D〉 B

C 21.8 1.8 6.0 15.8 2.4 0.2 23.8 2.9 0.2

± 0.8 0.4 0.6 0.9 0.4 0.1 1.5 0.6 0.1

I 52.1 1.3 2.2 16.3 2.5 0.4 47.2 3.0 5.2

± 3.9 0.5 0.2 2.1 0.5 0.2 3.0 0.6 0.3

D 26.1 1.9 1.4 67.9 2.0 2.6 29.0 4.0 1.2

± 3.2 0.3 0.2 4.4 0.5 0.1 3.5 0.5 0.2

GoF 0.983 1.054 1.220

is given in the inset. First of all we outline the general im-
provement obtained, especially for the 4.1 nm sample (fi-
nal Gof= 1.2) due to the new amorphous-like background
correction. The fit is now as good as it could be and
we have reasonable values of all refined parameters for
all samples. More detailed and complex models for the
amorphous background contribution are of course possi-
ble. However, with GoF≈ 1 we have reached the limit of
what we can obtain from these data sets. Tests of improved
models are planned for new higher-quality data sets.

The cumulative size distributions in the insets of
Figure 4 confirm that the average domain sizes of the three
samples are systematically smaller than the NP size, as de-
termined by HRTEM [17]. This finding can be ascribed to
the occurrence of imperfectly formed NPs, probably with
amorphous surface (cf. [32]). We cannot exclude multi-
domain NPs (possibly including simple twins). However,
as we can see from Figure 3, in all samples and for all
structure types there is a fraction of NPs which match
the nominal (HRTEM-inferred) NPs size.

The strain profiles of each structure type show a sim-
ilar trend throughout the three samples, presenting a dif-
ferent deformation at the smallest and the largest size: C
domains have a tensile strain (3%) at the smallest size and
a compressive deformation (1–4%, in agreement with [20])
at the largest ones; D domains present opposite behaviour;
I domains show a compressive lattice deformation (2–3%,
again in agreement with [20]) at larger size but differ-
ent trends towards the smaller sizes. These strain pro-
files agree well with the above discussed existence of both
single-domain ordered NPs and imperfectly formed and/or
multi-domain NPs. Amorphous surface or interface layers
may play an important role as well, determining the aver-
age strain of smaller domains. Indeed, strain profiles seem
to be more related to the synthesis process in each sam-
ple than to the particles size. This amorphous layer might
also give rise to high tensile deformation of the whole NP.
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Fig. 4. XRD pattern best fit and cumulative size distribution
(see insets) for the 2.0 nm (a), 3.2 nm (b) and 4.1 nm (c)
samples. Experimental (circle) and calculated (solid line) in-
tensities are plotted together with the total background profile
(including the amorphous-like contribution) and the difference
profile (below).

In this sense, the presence and position of a step on the
strain-size profile may depend on the surface arrangement
of a bulky surfactant. Additional studies are under way to
clarify this behavior.

The derived strain profiles do not allow a straightfor-
ward assessment of the NND variations with respect to the
bulk structure, when both structural and size dependences
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Fig. 5. Mean values of NND for each structure type and the
sample average (Av.) for the 2.0, 3.2 and 4.1 nm samples. EX-
AFS NND values are taken from [24].

are accounted for. We remind again that in I and D the
NND is very close to the bulk value (few % [19]), which
belong to the same coordination polyhedron. Accordingly,
the averages of the NNDs have been calculated for each
sample, either distinctly for each structure type and as
global sample average. These values have been normal-
ized by the NND bulk value and plotted in Figure 5 for
the three samples, together with values derived from EX-
AFS analysis [24] for comparison. Figure 5 clearly shows
the dilatation of NND for C and the contraction for I
and D, which in sample averages results to a contrac-
tion. We see also the compressive trend of all structure
types with increasing cluster size. This seems to be in good
agreement with the relaxing effect of the thiol molecules
on the inter-atomic distances of surface atoms described
elsewhere [24, 41]. In fact, as the surface-to-volume ratio
increases dramatically at smaller sizes, we can expect a
major influence of the capping agent for the smaller size
samples. Of course, NNDs values derived by the present
XRD analysis refer to the “ordered” fraction in each sam-
ple. On the contrary, EXAFS results refer to the whole
sample, including a not negligible amorphous fraction.
Furthermore, the EXAFS–XRD comparison is rather del-
icate because of the complexity of the system. The NND
is a complex average on many slightly different distances.
Differences between XRD and EXAFS NNDs values and
methods should be carefully considered, and further stud-
ies are under way to better address this issue.

Another aspect to be considered is the evolution of
the structure populations through the three samples. A
clear trend is not observed in the cumulative percentages
given in Table 2, where the contributions of composite and
single domain clusters are not distinguished. Additional
information about the structure evolution with NP size
can be drawn from the estimated thermal factor of each
structure type, as indicators of possible structural disorder
and relative stability. We can expect that C should not be
very stable at the lowest sizes, as well as I at the largest

sizes (cf. [5,16]). The high B values found for C in 2.0 nm
sample and for I in 4.1 nm sample are in good agreement
with these expectations.

6 Conclusions

This work describes a simultaneous extensive investigation
on size distribution and strain-size dependence of thiol-
capped gold NPs samples in the size range 2–4 nm based
only on XRD data. Firstly, distributions of domain size
and strain have been derived in these NP samples. Sec-
ondly, we highlighted the presence of an amorphous phase,
as previously evidenced by HRTEM [17]. Concerning the
method of analysis, an improvement of the background
function has been implemented to achieve the best final
results. Other systems and higher-quality data sets are
under investigation to further test this methodology and
corroborate the results.
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